Полиэтилентерефталат (Лавсан, полиэстер) - ПЭТ


Полиэтилентерефталат - синтетический линейный термопластичный полимер, принадлежащий к классу полиэфиров. Продукт поликонденсации терефталевой кислоты и моноэтиленгликоля. Полиэтилентерефталат обладает способностью существовать в аморфном или кристаллическом состояниях, причем степень кристалличности определяется термической предысторией материала. При быстром охлаждении полиэтилентерефталат аморфен, при медленном - кристалличен. Аморфный полиэтилентерефталат - твердый прозрачный материал, кристаллический - твердый непрозрачный бесцветный. Степень кристалличности может быть отрегулирована отжигом при некоторой температуре между температурой стеклования и температурой плавления. Товарный полиэтилентерефталат выпускается обычно в виде гранулята с размером гранул 2-4 миллиметра.

Обычное обозначение полиэтилентерефталата на российском рынке - ПЭТ, но могут встречаться и другие обозначения: ПЭТФ или PET или PETP (полиэтилентерефталат), APET (аморфный полиэтилентерефталат).
В промышленном масштабе ПЭТ начал выпускаться как волокнообразующий полимер, но вскоре занял одно из ведущих мест и в индустрии полимерной упаковки. По темпам роста потребления в настоящее время полиэтилентерефталат является наиболее быстрорастущим полимерным материалом.
Волокнообразующий полиэтилентерефталат известен на рынке под торговыми марками лавсан или полиэстер.

Технические требования, предъявляемые к отечественному ПЭТ, определяются «ГОСТ Р 51695-2000 Полиэтилентерефталат. Общие технические условия».

Строение

Полиэтилентерефталат является продуктом поликонденсации терефталевой кислоты (OH)-(CO)-C6H4-(CO)-(OH) и моноэтиленгликоля (OH)-C2H4-(OH). В процессе поликонденсации образуется линейная молекула полиэтилентерефталата [-O-(CH2)2-O-(CO)-C6H4-(CO)-] n и вода. Молекулярная масса полиэтилентерефталата 20-40 тыс. Фениленовая группа C6H4 в основной цепи придает жесткость скелету молекулы полиэтилентерефталата и повышает температуру стеклования и температуру плавления полимерного материала. Регулярность строения полимерной цепи повышает способность к кристаллизации полиэтилентерефталата, которая в значительной степени определяет механические свойства и которой можно управлять, поскольку степень кристалличности полиэтилентерефталата зависит от способа его получения и обработки. Возможность управления кристалличностью полиэтилентерефталата существенно расширяет спектр его применения. Так, например, подвергая аморфный ПЭТ двухосному растяжению при температуре выше температуры стеклования для создания кристалличности, получают материал с замечательными барьерными свойствами для изготовления бутылок для газированных напитков.
Максимальная степень кристалличности неориентированного полиэтилентерефталата - 40-45%, ориентированного - 60-65%.

Свойства

Основные характеристики полиэтилентерефталата.
  • Плотность аморфного полиэтилентерефталата: 1,33 г/см3.
  • Плотность кристаллического полиэтилентерефталата: 1,45 г/см3.
  • Плотность аморфно-кристаллического полиэтилентерефталата: 1,38-1,40 г/см3.
  • Коэффициент теплового расширения (расплав): 6,55·10-4.
  • Теплопроводность: 0,14 Вт/(м·К).
  • Сжимаемость (расплав): 99·106 Мпа.
  • Диэлектрическая постоянная при 23 °С и 1 кГц: 3,25.
  • Тангенс угла диэлектрических потерь при 1 Мгц: 0,013-0,015.
  • Относительное удлинение при разрыве:12-55%.
  • Температура стеклования аморфного полиэтилентерефталата: 67 °С.
  • Температура стеклования кристаллического полиэтилентерефталата: 81 °С.
  • Температура плавления: 250-265 °С.
  • Температура разложения: 350 °С.
  • Показатель преломления (линия Na) аморфного полиэтилентерефталата: 1,576.
  • Показатель преломления (линия Na) кристаллического полиэтилентерефталата: 1,640.
  • Предел прочности при растяжении: 172 МПа.
  • Модуль упругости при растяжении: 1,41·104 МПа.
  • Влагопоглощение: 0,3%.
  • Допустимая остаточная влага: 0,02%.
  • Морозостойкость: до -60 °С.
Полиэтилентерефталат обладает высокой механической прочностью и уларостойкостью, устойчивостью к истиранию и многократным деформациям при растяжении и изгибе и сохраняет свои высокие ударостойкие и прочностные характеристики в рабочем диапазоне температур от -40 °С до +60 °С, но для долгосрочного применения на улице этому материалу необходима защита от ультрафиолетового излучения. ПЭТ отличается низким коэффициентом трения и низкой гигроскопичностью. Общий диапазон рабочих температур изделий из полиэтилентерефталата от -60 до 170 °C.

По внешнему виду и по светопропусканию (90%) листы из ПЭТ аналогичны прозрачному оргстеклу (акрилу) и поликарбонату. Однако по сравнению с оргстеклом у полиэтилентерефталата ударная прочность в 10 раз больше.

ПЭТ - хороший диэлектрик, электрические свойства полиэтилентерефталата при температурах до 180°С даже в присутствии влаги изменяются незначительно.
По сопротивляемости агрессивным средам ПЭТ обладает высокой химической стойкостью к кислотам, щелочам, солям, спиртам, парафинам, минеральным маслам, бензину, жирам, эфиру. Имеет повышенную устойчивость к действию водяного пара. В то же время ПЭТ растворим в ацетоне, бензоле, толуоле, этилацетате, четыреххлористом углероде, хлороформе, метиленхлориде, метилэтилкетоне и, следовательно, листы ПЭТ могут так же хорошо склеиваться, как оргстекло, полистирол и поликарбонат.

Полиэтилентерефталат характеризуется отличной пластичностью в холодном и нагретом состоянии. Листы из этого полимера имеют незначительные внутренние напряжения, что делает процесс термоформования простым и высокотехнологичным, предварительная сушка листов не требуется, теплоемкость листов из полиэтилентерефталата меньше, чем у полистирола и оргстекла, поэтому нагрев ПЭТ-листов до температуры формования требует значительно меньшей тепловой энергии и времени. Все это приводит к экономии электроэнергии и снижению трудоемкости, а, следовательно, к снижению себестоимости изготавливаемой продукции. Поэтому полиэтилентерефталат может быть хорошей заменой прозрачному сплошному поликарбонату в различных сооружениях и конструкциях, так как его стоимость значительно ниже.

Термодеструкция полиэтилентерефталата происходит в температурном диапазоне 290-310 °С. Деструкция происходит статистически вдоль полимерной цепи. Основными летучими продуктами являются терефталевая кислота, уксусный альдегид и монооксид углерода. При 900 °С генерируется большое число разнообразных углеводородов. В основном летучие продукты состоят из диоксида углерода, монооксида углерода и метана.

Для повышения термо-, свето-, огнестойкости, для изменения цвета, фрикционных и других свойств в полиэтилентерефталат вводят различные добавки. Используют также методы химического модифицирования различными дикарбоновыми кислотами и гликолями, которые вводят при синтезе ПЭТ в реакционную смесь.

Получение

Полиэтилентерефталат получают поликонденсацией кристаллической терефталевой кислоты или ее диметилового эфира с жидким этиленгликолем по периодической или непрерывной схеме в две стадии. По технико-экономическим показателям преимущество имеет непрерывный процесс получения полиэтилентерефталата из кислоты и этиленгликоля. Этерификацию кислоты этиленгликолем (молярное соотношение компонентов от 1:1,2 до 1:1,5) проводят при 240-270 оС и давлении 0,1-0,2 МПа.

Полученную смесь бис-(2-гидроксиэтил)терефталата с его олигомерами подвергают поликонденсации в нескольких последовательно расположенных аппаратах, снабженных мешалками, при постепенном повышении температуры от 270 до 300 °С и снижении давления от 6600 до 66 Па.

После завершения процесса, расплав полиэтилентерефталата выдавливается из аппарата, охлаждается (при быстром охлаждении получают аморфный ПЭТ, при медленном - кристаллический) и гранулируется (товарный ПЭТ выпускается обычно в виде гранулята с размером гранул 2-4 миллиметра) или направляется на формование волокна. Матирующие агенты (TiO2), красители, инертные наполнители (каолин, тальк), антипирены, термо-, светостабилизаторы и другие добавки вводят во время синтеза или в полученный расплав полиэтилентерефталата.

Применениe

Благодаря широкому спектру свойств, а также возможности управлять его кристалличностью, полиэтилентерефталат находит разнообразное применение и занимает пятое место в мире - 6,5% от объема потребления всех полимерных материалов.
Основными областями использования полиэтилентерефталата являются производство преформ, волокон и пленок. Конечными потребителями этой продукции выступают производство бутылочной тары и упаковки, текстильная и шинная промышленность, производство фото- и кинопленок, магнитных лент и дисков.

Следует отметить, что структура потребления ПЭТ в России коренным образом отличается от видовой структуры потребления в остальном мире, где наибольшая доля производимого ПЭТ (65%) перерабатывается в волокна и нити. Формирование российского рынка ПЭТ находится в основном под влиянием развития упаковочной отрасли, и крупнейшим сектором потребления ПЭТ (94,8%) является производство преформ для последующего выдува бутылок и других емкостей. Производство волокон и пленок из ПЭТ в России остается крайне неразвитым (4,1%).
Полиэтилентерефталат перерабатывается литьем под давлением, экструзией, раздувным формованием. Волокна и тонкие пленки из ПЭТ изготавливают экструзией с охлаждением при комнатной температуре. Степень кристалличности может быть отрегулирована отжигом при некоторой температуре между температурами стеклования и температурой плавления. Литьем под давлением на специальных комплексах для производства ПЭТ-преформ из полиэтилентерефталата производят преформы для ПЭТ-бутылок. Кроме того, из полиэтилентерефталата производят текстильные волокна, кордные нити, электрическую изоляцию, детали электротехнического назначения, ручки электрических и газовых плит, различные разъемы, детали кузовов автомобилей, двигателей, насосов, компрессоров, корпуса швейных машин, изделия медицинского назначения.
Отдельный сегмент современного рынка - рециклинг полиэтилентерефталата.

В России несколько компаний, используя недорогие линии для переработки ПЭТ, в том числе и российского производства, специализируются на покупке отходов и продаже вторичного полиэтилентерефталата. Отходы собираются, сортируются вручную или автоматически и поступают на участок дробления. Загрязненная ПЭТ-дробленка проходит несколько контуров мойки, зону отделения примесей, сушку и поступает в зону растарки. Полученные ПЭТ-хлопья (флексы) можно гранулировать или перерабатывать в негранулированном виде. Вторичный ПЭТ хорошего качества можно использовать без органичений, в том числе для упаковки продуктов. Многие производители ПЭТ-преформ с успехом используют вторсырье в своем производстве.

Кроме того, полиэтилентерефталат можно перерабатывать в активированный уголь, получаемый посредством пиролиза ПЭТ.




В случае обнаружения несоответствий технической информации, ошибок, неточностей на нашем сайте просим Вас сообщать на admin@vensnab.ru
Москва, 1-й Институтский проезд, дом 3
Телефон: (495) 225-58-52
E-mail: info@vensnab.ru
Copyright © «ВентCнаб»®, 2008 г. Все права защищены.